

lattices and
their theta functions

Lattices

Definition: A lattice in \mathbb{R}^d is a discrete abelian subgroup of full rank d .

Examples:

$\mathbb{Z} \subset \mathbb{R}$ is a lattice \checkmark

$\mathbb{Z} + \sqrt{2} \cdot \mathbb{Z} \subset \mathbb{R}$ is not a lattice \times

$\mathbb{Z} \times \{0\} \subset \mathbb{R}^2$ is not a lattice \times

Notation: For $x, y \in \mathbb{R}^d$ we denote by (x, y) the standard Euclidean product $(x, y) = x_1 y_1 + x_2 y_2 + \dots + x_d y_d$
 $|x| = (\sum_{i=1}^d x_i^2)^{1/2}$ - Euclidean length

Definition: Let $\mathcal{L} \subset \mathbb{R}^d$ be a lattice and let $\mathcal{B} = \{b_1, \dots, b_d\}$ be a \mathbb{Z} -basis of \mathcal{L} .

A Gram matrix of \mathcal{L} associated to \mathcal{B} is

$$G := ((b_i, b_j))_{i,j=1}^d \leftarrow \begin{matrix} \text{symmetric} \\ \text{matrix} \end{matrix} \& \begin{matrix} \text{positive} \\ \text{definite} \end{matrix}$$

Any two Gram matrices, say G and G' , of \mathcal{L} are related by :

$$G = \mathcal{U} G' \mathcal{U}^t$$

for some $\mathcal{U} \in GL_d(\mathbb{Z})$

Definition: Let $\mathcal{N} \subset \mathbb{R}^d$ be a lattice
its dual lattice

$$\mathcal{N}^* := \{ m \in \mathbb{R}^d \mid (m, \ell) \in \mathbb{Z} \text{ for all } \ell \in \mathcal{N} \}$$

Example: $\mathcal{N} = a \cdot \mathbb{Z}$ for some $a \in \mathbb{R}$.
Then $\mathcal{N}^* = \frac{1}{a} \cdot \mathbb{Z}$

Exercise:

If $\mathcal{N} = B \cdot \mathbb{Z}^d$ for some matrix $B \in GL_n(\mathbb{R})$
Then $\mathcal{N}^* = \bar{B}^t \cdot \mathbb{Z}^d$ Notation: $\bar{B}^t = (\bar{B}^i)^t = (B^t)^i$

Definition: A lattice $\mathcal{L} \subset \mathbb{R}^d$ is

① integral if $(\ell_1, \ell_2) \in \mathbb{Z}$ for all $\ell_1, \ell_2 \in \mathcal{L}$

\mathcal{L} is integral \Leftrightarrow Gram matrix of \mathcal{L} has all integer elements

\mathcal{L} is integral $\Leftrightarrow \mathcal{L} \subset \mathcal{L}^*$

② even if $|\ell|^2 = (\ell, \ell) \in 2\mathbb{Z}$ for all $\ell \in \mathcal{L}$

Exercise: \mathcal{L} is even \Leftrightarrow Gram matrix of \mathcal{L} has all integer elements and all its diagonal elements are even.
We call such matrices even.

Example: lattice \mathbb{Z} is integral and not even.

lattice $2\mathbb{Z}$ is integral and even

③ unimodular if $\text{vol}(\mathbb{R}^d / \mathcal{L}) = 1$

Exercise: Let G be a Gram matrix of \mathcal{L} . Then $\text{vol}(\mathbb{R}^d / \mathcal{L}) = \det(G)^{\frac{1}{2}}$

Definition: Let \mathcal{L} be an even lattice.

The level of \mathcal{L} is the minimal positive integer N such that the lattice $N^{1/2} \cdot \mathcal{L}^*$ is even.

Let G be a Gram matrix of \mathcal{L} .

G is an even matrix, and N is the smallest positive integer such that $N \cdot G^{-1}$ is an even matrix.

Note that G^{-1} has all rational elements
 $\Rightarrow N \cdot G^{-1}$ is even for some $N \in \mathbb{Z}$.

Definition: The theta function of a lattice $\mathcal{N} \subset \mathbb{R}^d$ is

$$\Theta_{\mathcal{N}}(z) = \sum_{\ell \in \mathcal{N}} e^{\pi i \ell z^2}, \quad z \in \mathbb{H}.$$

The goal of our lecture is to investigate modular properties of $\Theta_{\mathcal{N}}$.

Theorem: Let $\mathcal{N} \subset \mathbb{R}^n$ be an even lattice of level N . Let G be a Gram matrix of \mathcal{N} .

Then for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$

$$\Theta_{\mathcal{N}}\left(\frac{az+b}{cz+d}\right) = \chi_G\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) \cdot \sqrt{cz+d}^n \cdot \Theta_{\mathcal{N}}(z)$$

$$\chi_G\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \left(\frac{\sqrt{-1\tau-c/d}}{i} \cdot \sqrt{\frac{\tau}{i}} \right)^n \cdot \sum_{p \in \mathbb{Z}^n/d\mathbb{Z}^n} e^{\pi i b(p, sp)/d}$$

Recall: $\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \mid c \equiv 0 \pmod{N} \right\}$

Lemma:

If n is even then $\chi_G : \Gamma_0(N) \rightarrow \{\pm 1\}$ is a group character and

$$\chi_G \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = \begin{cases} \left(\frac{d}{|d|} \right)^{n/2} & \text{for } c=0 \\ \left(\frac{(-1)^{n/2} \cdot \det G}{p} \right) & \text{for } c \neq 0 \end{cases}$$

Legendre symbol

in the case p is an odd prime number of the form $p \equiv d \pmod{c}$.

We will prove this result during our next lectures

Definition: Let $f: \mathbb{R}^d \rightarrow \mathbb{C}$ be an L^1 function.

The Fourier transform of f is

$$\hat{f}(y) = \int_{\mathbb{R}^d} f(x) e^{-2\pi i x \cdot y} dy$$

Poisson summation formula: Let $\mathcal{L} \subset \mathbb{R}^d$ be a lattice

Then $\sum_{\ell \in \mathcal{L}} f(\ell) = \frac{1}{\text{vol}(\mathbb{R}^d/\mathcal{L})} \cdot \sum_{m \in \mathcal{L}^*} \hat{f}(m)$

Lemma: Let $\mathcal{L} \subset \mathbb{R}^d$ be a lattice. Then

$$(-iz)^{d/2} \Theta_{\mathcal{L}}\left(-\frac{1}{z}\right) = \frac{1}{\text{vol}(\mathbb{R}^d/\mathcal{L})} \Theta_{\mathcal{L}^*}(z)$$

Lemma: Let \mathcal{N} be an even lattice. Then

$$\mathbb{H}_{\mathcal{N}}(z+1) = \mathbb{H}_{\mathcal{N}}(z)$$

Proof: (very easy) Exercise

Exercise:
even + unimodular

$$\mathcal{N}^* = \mathcal{N}$$

The easiest transformation law:

\mathcal{N} is even and unimodular.

In this case

$$\mathbb{H}_{\mathcal{N}}\left(-\frac{1}{z}\right) = (-iz)^{d/2} \mathbb{H}_{\mathcal{N}}(z)$$

$$\mathbb{H}_{\mathcal{N}}(z+1) = \mathbb{H}_{\mathcal{N}}(z)$$

Theorem: Let $\mathcal{N} \subset \mathbb{R}^d$ be an even unimodular lattice. Then d is divisible by 8 and $\mathbb{H}_{\mathcal{N}} \in M_{d/2}(\Gamma_1)$.

It suffices to show that d can not be an odd multiple of 4. (\star)

d odd $\Rightarrow \mathcal{L} \oplus \mathcal{L} \oplus \mathcal{L} \oplus \mathcal{L}$ is an even unimodular lattice in $\mathbb{R}^{4d} \Rightarrow \mathcal{L}$ can not exist by (\star)

d is an odd multiple of 2 $\Rightarrow \mathcal{L} \oplus \mathcal{L}$ can not exist by (\star)

Lemma: Suppose that f is a cusp form of weight $k \in 2\mathbb{Z}_{>0}$ and group Γ_1 , and f has the Fourier expansion

$$f(z) = \sum_{n=1}^{\infty} c_f(n) e^{2\pi i n z}$$

Then $c_f(n) = \mathcal{O}(n^{k/2})$ as $n \rightarrow \infty$

Proof: $\det f \in S_K(\Gamma_1)$.

Then the function $|f(z)| \operatorname{Im}(z)^{K/2} =: g(z)$
is Γ_1 -invariant.

Moreover, $g(z)$ is bounded as $z \in \mathbb{H}$

Suppose $|g(z)| < C$, $z \in \mathbb{H}$ for some $C \in \mathbb{R}_+$

We estimate the Fourier coefficients of f in the following way:

$$C_f(n) = \int_{iy_0}^{iy_0+1} f(z) e^{-2\pi i n z} dz \quad y_0 > 0$$

$$|C_f(n)| = \left| \int_{i/n}^{i/n+1} f(z) e^{-2\pi i n z} dz \right| = \left\{ \begin{array}{l} \text{we choose} \\ y_0 = \frac{1}{n} \end{array} \right\} = \left| \int_{i/n}^{i/n+1} f(z) \operatorname{Im}(z)^{K/2} \cdot \operatorname{Im}(z)^{-K/2} e^{-2\pi i n z} dz \right|$$

$$\leq \int_{i/n}^{i/n+1} |f(z) \operatorname{Im}(z)^{K/2}| \cdot n^{K/2} \cdot e^{2\pi} \cdot \left| e^{-2\pi i n \operatorname{Re}(z)} \right| dz \leq C \cdot e^{2\pi} \cdot n^{K/2}$$

This finishes the proof of the lemma \square

Since $M_k(\Gamma_1) = \mathbb{C} \cdot E_k \oplus S_k(\Gamma_1)$, the theta function can be written as

$$\Theta_d(z) = E_{d/2}(z) + f(z) \quad \text{for some } f \in S_{d/2}(\Gamma_1)$$

We know that the Fourier expansion of E_k is

$$E_k(z) = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} g_{k-1}(n) e^{2\pi i n z}$$

B_k is negative if k is divisible by 4

and positive if k is an odd multiple of 2.

Fourier coefficients of E_k grow at least like n^{k-1}

If d is an odd multiple of 4, then some coefficients of Θ_d are negative ↴

This finishes the proof of the theorem □

The smallest dimension where an even, unimodular can exist is $d = 8$.

Such a lattice exists, it is the E_8 -lattice

$$\mathcal{N}_{E_8} := \left\{ (x_i) \in \mathbb{Z}^8 \cup \left(\mathbb{Z} + \frac{1}{2}\right)^8 \mid \sum_i x_i \equiv 0 \pmod{2} \right\}$$

Exercise:

- Show that \mathcal{N} is a lattice
- Show that \mathcal{N} is even and unimodular

Lemma: $\Theta_{\mathcal{N}_{E_8}}(z) = E_4(z)$.